
1/27

Atypical Hodge Loci

Phillip Griffiths∗

Outline
I. Introduction

II. Two examples

III. Statement of the main result

IV. Proof of the main result

V. Motivic Hodge structures

References
∗Talk based on the paper [BKU] and related works given in the

references in that work, and on extensive discussions with Mark Green
and Colleen Robles. The last section has benefitted through discussions
with Matt Kerr.



2/27

I. Introduction
Q: What can one say about Hodge loci?

• B is a smooth, connected quasi-projective variety;

• V→ B is the local system underlying a variation of
polarized Hodge structure of weight n;

• geometric case; smooth projective family X
π−→ B and

Vb = Hn(Xb,Q)prim;

• HL(B) = set of b ∈ B with more Hodge classes in

V⊗b :=
k
⊕(

k
⊗Vb) than at a very general point of b;

• Cattani-Deligne-Kaplan: HL(B) is a countable union of
proper algebraic subvarieties;

• in geometric case assuming the Hodge conjecture there
are extra classes of algebraic cycles in X × · · · × X︸ ︷︷ ︸

k

’s.
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Q: What can we say about HL(B)?

• very informally stated the main result in [BKU] is

(I.1) For n = 3 and aside from exceptional degenerate
cases, every irreducible component of HL(B)pos
has strictly larger than the expected codimension;

• know of no conceptual reason why in the non-classical
case there should be more than the expected amount of
algebraic cycles;

• proof uses integrability conditions for the differential
constraint imposed by transversality in the non-classical
case;

• sufficient condition for result is

g−k,k 6= 0, some k = 3;

• notation and criterion for this given below.

• implied by coupling length = 3
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II. Two examples
• X = Xb, T = TbB and T → H1(TX ) = T Def(X );

• V p,q = Hq(Ωp
X ) and T → ⊕Hom(V p,q,V p−1,q+1) is

Kodaira-Spencer mapping giving first variation of Hodge
decomposition of a class in Hn(X );

• for X a surface, θ ∈ T , λ ∈ Hg1(X ) and θ · λ ∈ H0,2(X )
gives the first order deviation from λ remaining a Hodge
class in the direction θ;

• NLλ ⊂ B is the Noether-Lefschetz locus where λ remains
a Hodge class; assume reduced and define
Tλ ⊂ T = ker{θ → θ · λ};
• for X ⊂ P3 of degree d = 4 in the estimate

d − 3 5 codimB NLλ 5

(
d − 1

3

)
= h2,0(X )

both bounds are achieved (Green; lower bound ⇐⇒ X
contains a line);
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• now let dimX = 4, λ ∈ Hg2(X )prim; in first
approximation

codimNLλ 5 h1,3(X ) + h0,4(X );

• but θ · λ ∈ H1,3(X ) so this estimate must be refined to

(∗) codimB NLλ 5 h1,3(X ).

Definition: The right-hand side of (∗) is the expected
codimension of NLλ in B .

• Integrability: With Tλ ⊂ T as above set

σλ = Image{Tλ ⊗ H4,0(X )→ H3,1(X )}.

Observation:

codimB NLλ 5 h1,3(X )− dimσ(λ).
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Proof: For θ ∈ Tλ, θ′ ∈ T , ω ∈ H4,0(X )

〈θω, θ′λ〉 = 〈ω, θθ′λ〉
= 〈ω, θ′θλ〉 (integrability)

= 0.

Thus the number of conditions on θ′ ∈ T to be in Tλ is
5 h1,3 − dimσ(λ).

• Note: For the first example of X ⊂ P3 the expected
codimension drops for geometric reasons: if L ⊂ X is a
line with Hodge class λ and if
ω ∈ H0(Ω2

X ) ∼= H0(OX (d − 4)), then if L ⊂ (ω),

〈θλ, ω〉 = 〈λ, θ · ω〉 =

ˆ
L

θcω = 0

for all θ ∈ H1(TX ); thus such ω’s do not contribute to
the equations defining NLλ. In the second example the
drop by σλ in the expected codimension is for Hodge
theoretic reasons.



7/27

III. Statement of main result

• Polarized Hodge structure (V ,Q,F •) of weight n

– non-degenerate Q : V ⊗ V → Q,
Q(u, v) = (−1)nQ(v , u);

– F n ⊂ F n−1 ⊂ · · · ⊂ F 0 = VC, F p ⊕ F
n−p+1 ∼−→ VC for

0 5 p 5 n;
– V p,q = F p ∩ F

q
, VC = ⊕V p,q with V p,q = V q,p;

– Hodge-Riemann bilinear relations;
– n = 2m, Hgm(V ) = Vm,m ∩ V .
– Lie algebra g ⊂ End(V ,Q) and gC = ⊕g−k,k where

g−k,k := g−k = {A ∈ gC : A(V p,q) ⊂ V p−k,q+k}
`(g) = min{k : g−k 6= (0)};

– `(g) = 3 =⇒ n = 3.



8/27

• Mumford-Tate group

– V⊗ :=
k
⊕(⊗kV );

– Hodge tensors Hg•(V ) =
k
⊕Hgkn/2(V );

– MT(V ) ⊂ Aut(V ,Q) is Fix(Hg•(V ));
– is a reductive Q-algebraic group H;
– finite cover of H is C∗k × H0 where H0 is semi-simple;

for simplicity of exposition we will assume H is
semi-simple; essential ideas appear in this case;
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Example: Assume λ,Q generate the algebra of Hodge
tensors, MT(V ) = Hλ = Fix λ ⊂ Aut(V ,Q).

• Variation of Hodge structure (V,F•;B)

– B and V→ B as above;
– F• is a filtration of V := VC⊗COB inducing a polarized

Hodge structure on each Vb (understood there is
Q : V⊗ V→ Q);

– ∇Fp ⊂ Fp−1 ⊗ Ω1
B (transversality);

– for b0 ∈ B and V = Vb0 we have the monodromy group
Γ ⊂ Aut(V ,Q);

– the Q-Zariski closure ΓQ = semi-simple Q-algebraic
group that is a factor of the MT-group of (V ,Q,F •b ) at
a very general point of B.
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• Period mappings

– G = semi-simple Q-algebraic group and D = period
domain of polarized Hodge structures of a given type
and with generic Mumford-Tate group G ;

– D = G (R)/G0, G0 compact;
– period mapping Φ : B → Γ\D;
– for simplicity of exposition we will assume that

Γ
Q

:= G =Mumford-Tate group of the polarized Hodge
structure at a very general point of B;

This is justified because the image Φ(B) of the period

mapping is contained in a translate of a ΓQ(R)-orbit.

– TF0D
∼= gC/F

0gC ∼=
k>0
⊕ g−k,k where gC ⊂ End(VC) and

θ ∈ g−k,k satisfies θ(F p) ⊂ F p−k ;
– Φ∗ : TbB → g−1,1 (transversality);
– image is an abelian subalgebra a ⊂ g−1,1 (integrability);
– notation: Φ(B) = P ⊂ Γ\D, P̃ ⊂ D inverse image of P.
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• Hodge loci

– if λ,Q generate Hg•(V⊗b ), then

NL0
λ = Φ−1(Φ(B)∩Gλ(R)·o)0 (0= identity component);

– thus Noether-Lefschetz loci are (translates of) orbits of
particular Mumford-Tate subgroups of G ;

– this is the crucial conceptual point; Hodge loci are
intersections with translates of Mumford-Tate
sub-domains.

Definition: If H ⊂ G is a Mumford-Tate group and

DH = H(R) · o, ΓH = Γ ∩ H

Φ−1(Φ(B) ∩ (ΓH\DH))0 is a special subvariety of B .

• thus special subvarieties of B are those b ∈ B where the
algebra of Hodge tensors is strictly larger than at a
general point of B .
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• set PH = P ∩ (ΓH\DH), then the standard codimension of
an intersection inequality is

(\) codimΓ\D PH 5 codimΓ\D P + codimΓ\D(ΓH\DH);

Definition: Special subvariety is atypical if we have strict
inequality in (\).

• Thus atypical means we have more Hodge tensors than
predicted by the usual expected dimension count formula.

Example: Notations as in the second example above

codimΓ\D(Φ(B) ∩ (Γλ\Dλ)) = codimΓ\D Φ(B)

+ codimΓ\D(Γλ\Dλ)− dimσ(λ).
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Theorem ([BKU]): If `(g) = 3, then every special
subvariety of B is atypical.

Example: For smooth X ⊂ Pn+1, n = 3 and deg(X ) = 6
every special subvariety is atypical.

Reason for result: M is a manifold and I ′, I ′′ distributions in
TM given by {ω′i}, {ω′′α}; N ′,N ′′ variable integral manifolds of
I ′, I ′′|N′ ’s; want to estimate codimension of the N ′ ∩ N ′′’s;
integrability conditions given by dω′i may impose linear
relations on the ω′′α|N′ ; leads to more than expected number of
N ′ ∩ N ′′’s.
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IV. Proof of the main result
• Assume equality holds in (\) and will arrive at a

contraction to the assumption g−k 6= 0;
• pass to tangent spaces and use

dimT0D = g−,

dimT0DH = h−,

T0P̃ ⊂ g−1,

T0(P̃ ∩ DH) = T0P̃ ∩ h−1

∑
k=2

dim h−k
**

+ codimh−1(T0P̃ ∩ h−1)
**

=
∑

k=2 dim g−k + codimg−1 T0P̃

dim h−k 5 dim g−k

codimh−1(T0P̃ ∩ h−1) 5 codimg−1 T0P̃

=⇒

{
h−k = g−k , k = 2

codimh−1 T0P̃ ∩ h−1 = codimg−1 T0P̃ .
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We want to conclude

(\\)
h−1 = g−1

⇓
T0DH = T0D =⇒ DH = D.

• Basic idea
– h, g are reductive Lie algebras in which h−, g− are

parabolic sub-algebras;
– there is maximal torus tR ⊂ gR relative to which h−, g−

are direct sums of negative root spaces;
– the root space and Hodge decomposition of h−, g− align

in the sense that each of h−k , g−k are direct sums of
negative root spaces;

– this is the first key point where the Lie theory and Hodge
theory interact; the complex structure on T0D ∼= gR/g

0
R

is given by an E ∈ tR whose centralizer is g0
R and whose

eigenspace decomposition on gR/g
0
R is a direct sum of

non-trivial conjugate root subspaces (cf. [R] for details);
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– let βi , i ∈ I , be the simple positive roots whith
corresponding root space gβi ⊂ g+; denote by J ⊂ I the
subset, possibly empty, where gβi ⊂ h+; since every
positive root is a sum of the βi , it will suffice to show
that

([) J = I ;

in this case we will have (\\);
– note that g− is generated by g−1 ⇐⇒ all g−βi ⊂g−1.

• Second key point
– this is where integrability comes in; P̃ ⊂ D is an integral

manifold of the G (R)-invariant distribution of T (D)
given by g−1 ⊂ g− = T0D; the real Lie algebra
generated by the brackets in g±1 corresponds to a
reductive subgroup G ′R ⊂ G (R) and P̃ ⊂ G ′R · o; thus we
may assume

g−1 bracket generates g−

(cf. [R] for details);
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– suitably interpreted the previous considerations apply
also to P̃ ∩ DH ; the upshot is that in effect we may
assume this bracket generating property also for h−1 and
h−;

– we now assume ([) also does not hold, and from this
note that

([[) [gβi · gβj ] = 0, j ∈ J and i ∈ I\J.

Indeed, if this bracket is non-zero, then since h−2 = g−2

it belongs to h2 and the non-zero root space

gβi = [[gβi , gβj ], g−βj ] ∈ h1

which is a contradiction;
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– for the final step, if g3 6= 0, we have β1, β2, β3 such that
β1 + β2 + β3 is a root. Then

[gβ1+β2+β3 , g−β1−β2 ] = g−β3 ∈ h1;

thus
J 6= ∅.

If J 6= I , then ([[) gives a contradiction to the fact that
the highest root is

∑
i∈I niβi with all ni > 0.

– If n = 2, the argument works all the way up to the last
step where, as in the first example, we do have J = ∅
(and g−2 6= 0 ⇐⇒ h2,0 > 0 for G = SO(2a, b)).
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• Examples: X ⊂ Pn+1 smooth degree d hypersurface

F (x) = 0

where F (x) homogeneous of degree d . For
S• = C[x0, · · · , xn+1],

J• = Jacobian ideal {Fx0 , · · · ,Fxn+1},
R• = S•/J•F

there is an isomorphism

Hp,n−p(X )prim ∼= R(n−p)d+n−2;

tangent space family of X ’s is

T ∼= Rd
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and

(]]) T ⊗ Hp,n−p(X )prim → Hp−1,n−p+1(X )prim

given by multiplication of polynomials

Rd ⊗ R(n−p)d+n−2 → R(n−p+1)d+n−2.

X non-singular gives (Macauly’s theorem) that

the mappings (]]) are non-zero whenever both sides
are non-zero.

G is Mumford-Tate group for the period mapping of
X ’s, then

Rd → g−1,1 ⊂ F−1 End(V ,Q).
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Image is an abelian sub-algebra a ⊂ g−1.1 ⊂ gC, induces

Symk a→ g−k,k

giving

Symk a→ g−k,k ⊂ ⊕Hom
(
Hp,n−p(X )prim,H

p−k,n−p+k(X )prim
)

which is a subspace of

Symk Rd ⊗ R (n−p)d+n−2 → R (n−p+k)d+n−2

given by multiplication of polynomials. Conclude that
map is non-zero whenever both sides are non-zero, which
gives g−3,3 6= 0 for n = 3, d = 6.
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– In the second example at the beginning

σ(λ) = 0 ⇐⇒ g−3 = (0).

• in general coupling length defined by

ζ(a) = max{m : Symm a→ Hom(Vn,0
b ,Vn−m,m

b ) 6= 0}

at a general point of B . Then

ζ(a) = `(g).

There are many examples where ζ(a) = 3; e.g.,
hypersurfaces as above, CY’s of dimension = 3 whose
Yukaya coupling is 6= 0.
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V. Motivic Hodge structures
• Recent posting arXiv.org/abs/2308.16164 by Tobias

Kreutz gives an interesting application of the method in
[BKU].

• Idea is nice; statement of the result is not complete
because it does not use integrability of transversality;
following is an amended version.

• Polarized Hodge structure (PHS) (V ,F •,Q) := H comes
from geometry if

– (first approximation) H = Hn(X ) for a smooth
projective variety X ,

– actual definition is motivic; basically H is made up of
sub-quotients of the above.

• These objects have Mumford-Tate groups G and
corresponding Mumford-Tate domains D with compact
dual qD = G (C)/P ; this is a homogenous algebraic variety
defined over Q.
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• If D is non-classical then most points of D do not come
from geometry; intuitive reason is that because of the
differential constraint the image of a period mapping does
not contain an open set; the set of points of coming from
geometry is the complement of a countable union of
proper analytic subvarieties.

• Nobody has exhibited an explicit H not coming from
geometry; assuming the generalized Hodge conjecture
(GHC) and the version due to André of Grothendieck’s
generalized period conjecture (GPC), Kreutz gives a
necessary condition that H come from geometry.

• With terms to be explained the result is

tr deg(H) < L(g) =⇒ H does not come from geometry.

• H is defined over a field k if equivalently

– F p ⊂ V ⊗Q k,

– F • ∈ qD(k).
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• Then the definition

tr deg(H) := min tr deg(k)

makes sense.

• As above H ∈ qD = G (C)/P where G = Mumford-Tate
group of H , and we define

L(g) := min
{
codimg/g0 a : a ⊂ g−1,1 is abelian

}
.

Then{
L(g) = 0 ⇐⇒ D is a Hermitian symmetric domain

L(g) > 0 ⇐⇒ D is non-classical.

Theorem: Assuming (GHC) and (GPC), if

tr deg(H) < L(g)

the H does not come from geometry.

• Equivalently,

H comes from geometry =⇒ tr deg(H) = L(g).
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• For X defined over Q the GPC roughly says that the
relations over Q satisfied by the period matrix are
reflected in the Mumford-Tate group of the PHS. The
extension of the GHC to a general X is due to André is
essential for the proof.

• The argument also gives for H = Hn(X ) with
Mumford-Tate domain D and assuming GPC

tr degH < dimD =⇒ X is not defined over Q.

Example: n = 2 and H has Hodge numbers (2, b, 2)

tr deg(H) 5 b =⇒

{
H does not come

from geometry

}
.

n = 3 and H has Hodge numbers (1, 1, 1, 1)

tr deg(H) 5 2 =⇒

{
H does not come

from geometry

}
.
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