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|. Introduction

Q:

What can one say about Hodge loci?

B is a smooth, connected quasi-projective variety;

V — B is the local system underlying a variation of
polarized Hodge structure of weight n;

geometric case; smooth projective family X = B and
Vb = Hn(Xb7 @)prim;

HL(B) = set of b € B with more Hodge classes in

k K
V§ := ®&(®V}) than at a very general point of b;

Cattani-Deligne-Kaplan: HIL(B) is a countable union of
proper algebraic subvarieties;

in geometric case assuming the Hodge conjecture there
are extra classes of algebraic cycles in X x --- x X's.
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Q: What can we say about HL(B)?
e very informally stated the main result in [BKU] is

(I.1)  For n = 3 and aside from exceptional degenerate
cases, every irreducible component of HL(B),os
has strictly larger than the expected codimension;

e know of no conceptual reason why in the non-classical
case there should be more than the expected amount of
algebraic cycles;

e proof uses integrability conditions for the differential
constraint imposed by transversality in the non-classical
case;

e sufficient condition for result is

gk £0, some k=>3;

e notation and criterion for this given below.
e implied by coupling length = 3 3/27



[I. Two examples

X = Xb, T = TbB and T — Hl(Tx) = TDef(X),

VPa = HI(Q%) and T — @ Hom(VP9, VP~1at1) s
Kodaira-Spencer mapping giving first variation of Hodge
decomposition of a class in H"(X);

for X a surface, § € T, A € Hg'(X) and 6 - X € H*?(X)
gives the first order deviation from A remaining a Hodge
class in the direction 0;

NL, C B is the Noether-Lefschetz locus where A remains
a Hodge class; assume reduced and define

T\ CT=ker{0 —0-\};

for X C P3 of degree d = 4 in the estimate

d—1
d—3§codimBNLA§( 3 >:h2’°(X)

both bounds are achieved (Green; lower bound <— X
contains a line); 4/27



e now let dim X = 4, A\ € Hg?(X)rim; in first
approximation

codim NLy < h'3(X) 4+ h%*(X);
e but 0- X € H3(X) so this estimate must be refined to
(%) codimg NLy < h'3(X).

Definition: The right-hand side of (x) is the expected
codimension of NL, in B.

e Integrability: With T\ C T as above set
oy = Image{ T\, ® H*°(X) — H*'(X)}.
Observation:

codimg NLy < h'3(X) — dima()).
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Proof: For0 € Ty, 0 € T, w € H*9(X)
(00, 0'\) = (w, 00'\)
= (w,0'0)\) (integrability)
=0.

Thus the number of conditions on & € T to be in T, is
< A3 —dima(N). O
e Note: For the first example of X C P3 the expected
codimension drops for geometric reasons: if L C X is a
line with Hodge class A and if
w € H(Q%) = H°(Ox(d — 4)), then if L C (w),

(ON, w) = (N, 0-w) :/Lejw:o

for all € H'(Tx); thus such w's do not contribute to

the equations defining NL,. In the second example the

drop by o, in the expected codimension is for Hodge

theoretic reasons. 6/27



[1l. Statement of main result

e Polarized Hodge structure (V, Q, F*) of weight n
— non-degenerate @ : VRV — Q,
Q(u, v) = (=1)"Q(v, u);
- F"cFlc...CcF'=Ve, FP®F
0=p=n
VP = FPAFY, Vo = @VP9 with VPd = VIP;
Hodge-Riemann bilinear relations;
n=2m, Hg"(V)=Vvm™"NV.
Lie algebra g € End(V, Q) and gc = ®g~ % where

n—p+1 ~
Pty Vi for

g K i=gF ={Aegc: A(VPI) C VP Rathy
((g) = min{k : g~ # (0)};

-4g)=23 = n=3.
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o Mumford-Tate group
k
- V@ = g(@"V);

Hodge tensors Hg®*(V) = éHgk”ﬂ(V);

MT(V) C Aut(V, Q) is Fix(Hg*(V));

is a reductive Q-algebraic group H;

— finite cover of H is C** x Hy where Hp is semi-simple;
for simplicity of exposition we will assume H is
semi-simple; essential ideas appear in this case;
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Example: Assume \, Q generate the algebra of Hodge
tensors, MT(V) = Hy, = Fix A C Aut(V, Q).
e Variation of Hodge structure (V,J*; B)

B and V — B as above;

F* is a filtration of V := VecOpg inducing a polarized
Hodge structure on each V}, (understood there is

Q: VeV —Q)

VFP C FP~1 @ Qf (transversality);

for bg € B and V = Vj,; we have the monodromy group
I c Aut(V, Q);

the Q-Zariski closure I'? = semi-simple Q-algebraic
group that is a factor of the MT-group of (V,Q, F}) at
a very general point of B.
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e Period mappings
— G = semi-simple Q-algebraic group and D = period
domain of polarized Hodge structures of a given type
and with generic Mumford-Tate group G;
- D= G(R)/Gp, Gy compact;
— period mapping ¢ : B — '\ D;
— for simplicity of exposition we will assume that

Y .— G =Mumford-Tate group of the polarized Hodge
structure at a very general point of B;

This is justified because the image ®(B) of the period
mapping is contained in a translate of a I2(R)-orbit.

k>0
— Te,D = gc/F9c = @ g~k where gc € End(V¢) and
6 € g~kk satisfies O(FP) C FP~K,
- &, TpB— g 11 (transversality);
image is an abelian subalgebra a C g~ 1! (integrability);
notation: ®(B) = P C I'\D, P C D inverse image of P.
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e Hodge loci
— if A, Q generate Hg’(VEQ), then

NL§ = o7 1(d(B)NGy(R)-0)° (°= identity component);

— thus Noether-Lefschetz loci are (translates of) orbits of
particular Mumford-Tate subgroups of G;

— this is the crucial conceptual point; Hodge loci are
intersections with translates of Mumford-Tate
sub-domains.

Definition: If H C G is a Mumford-Tate group and
DH:H(R)-O, FH:FﬂH

d~1(d(B) N (T'y\Dy))° is a special subvariety of B.
e thus special subvarieties of B are those b € B where the
algebra of Hodge tensors is strictly larger than at a
general point of B. 11/27



e set Py = PN (I'y\Dy), then the standard codimension of
an intersection inequality is

(h) COdimr\D Py § COdimr\D P+ codimr\D(FH\DH);

Definition: Special subvariety is atypical if we have strict
inequality in (f).
e Thus atypical means we have more Hodge tensors than
predicted by the usual expected dimension count formula.

Example: Notations as in the second example above

COdlmr\D((D(B) N (r)\\D)\)) — codjmr\D (D(B)
+ codimp p(Mx\Dy) — dima(A).

12/27



Theorem ([BKU]): If{(g) = 3, then every special
subvariety of B is atypical.

Example: For smooth X C P™!, n > 3 and deg(X) = 6
every special subvariety is atypical.

Reason for result: M is a manifold and /’, I” distributions in
TM given by {w!}, {w/}; N', N” variable integral manifolds of
I',1"|n's; want to estimate codimension of the N N N"’s;
integrability conditions given by dw! may impose linear
relations on the w!|y/; leads to more than expected number of
N N N"'s.
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V. Proof of the main result
e Assume equality holds in () and will arrive at a
contraction to the assumption g=* # 0;
e pass to tangent spaces and use

dim ToD = g~
dim ToDy = b,
TOﬁCg_la

To(PN Dy) = ToPNH!
/_><_\

> " dimbh~* + codimy-1(ToP N h~1) = 3=, dim g~ ¥ + codimg-1 ToP
k22 dim [’J_k < dim g_k
codimy1(ToP N h~1) < codimy+ TyP

b =g k=2
— . ~ . ~
codimy-1 ToP N h~ = codimy-1 ToP.
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We want to conclude
b=t = g!

ToDy

()

<=l

ToD — Dy =D.

e Basic idea

— b, g are reductive Lie algebras in which h—, g~ are
parabolic sub-algebras;

— there is maximal torus tg C gg relative to which h=, g~
are direct sums of negative root spaces;

— the root space and Hodge decomposition of h~, g~ align
in the sense that each of h=%, g=* are direct sums of
negative root spaces;

— this is the first key point where the Lie theory and Hodge
theory interact; the complex structure on ToD = gR/g%
is given by an E € tg whose centralizer is g]% and whose
eigenspace decomposition on gR/g?R is a direct sum of
non-trivial conjugate root subspaces (cf. [R] for details);
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— let B, i € I, be the simple positive roots whith
corresponding root space gg, C g*; denote by J C [ the
subset, possibly empty, where gg, C h; since every
positive root is a sum of the ;, it will suffice to show
that

(b) J=1,

in this case we will have (f);

— note that g~ is generated by g~

e Second key point

— this is where integrability comes in; PcC Dis an integral
manifold of the G(R)-invariant distribution of T(D)
given by g~! C g~ = ToD; the real Lie algebra
generated by the brackets in g*! corresponds to a
reductive subgroup G; C G(R) and PC Gg - 0; thus we
may assume

1 1

< allg_gCg™ .

g~ ! bracket generates g~

(cf. [R] for details); 16/27



— suitably interpreted the previous considerations apply
also to PN Dy; the upshot is that in effect we may
assume this bracket generating property also for h~! and
b~

— we now assume (b) also does not hold, and from this
note that

(bb) [95, - 93] =0, j€J and i€ /\J.

Indeed, if this bracket is non-zero, then since h‘z = 9_2
it belongs to h2 and the non-zero root space

98 = [[gﬁivgﬁj]vg—ﬁj] € hl

which is a contradiction;
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— for the final step, if g> # 0, we have 1, (2, 33 such that
f1 + P2 + (3 is a root. Then

[961+ﬂ2+[3’379—61—,82] =8-5 € hl;

thus

J#0.

If J# 1, then (bb) gives a contradiction to the fact that
the highest root is > ., ni3; with all n; > 0.

— If n =2, the argument works all the way up to the last
step where, as in the first example, we do have J =0
(and g72 #0 <= h?9 >0 for G = SO(2a, b)).
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o Examples: X C P"t! smooth degree d hypersurface
F(x)=0

where F(x) homogeneous of degree d. For

S* = (C[XOa e 7Xn+1]7
J* = Jacobian ideal {Fy, -, Fx,.. },
R® = S*/Je

there is an isomorphism
HPM=P(X ) prim = R(TP)I+02,
tangent space family of X's is

TR
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and
(42) T @ HP"P(X) prim = HP™B" P (X)) prim
given by multiplication of polynomials
RY @ R(n—p)d+n—2 _, pln—p+1)d+n—2
X non-singular gives (Macauly's theorem) that

the mappings (£f) are non-zero whenever both sides
are non-zero.

G is Mumford-Tate group for the period mapping of
X's, then

R? — g~t! ¢ F~1End(V, Q).
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Image is an abelian sub-algebra a C g=%! C gc, induces
Sym* a — g=kk
giving
Sym* a — g~** C & Hom (H”"P(X)prim, H?~*" (X ) prim)
which is a subspace of
Sym* R @ R(P)F1-2 _y R(n—ptk)dtn-2

given by multiplication of polynomials. Conclude that
map is non-zero whenever both sides are non-zero, which
gives g 733 £0forn=>3,d > 6. O
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— In the second example at the beginning
o(\) =0 < g 3=(0).
e in general coupling length defined by
¢(a) = max{m : Sym™ a — Hom(V}°, V;~™™) # 0}
at a general point of B. Then
¢(a) = ((g).

There are many examples where ((a) = 3; e.g.,
hypersurfaces as above, CY's of dimension = 3 whose
Yukaya coupling is # 0.
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V. Motivic Hodge structures

e Recent posting arXiv.org/abs/2308.16164 by Tobias
Kreutz gives an interesting application of the method in
[BKUI.

e |dea is nice; statement of the result is not complete
because it does not use integrability of transversality;
following is an amended version.

e Polarized Hodge structure (PHS) (V, F*, Q) := H comes
from geometry if

— (first approximation) H = H"(X) for a smooth
projective variety X,

— actual definition is motivic; basically H is made up of
sub-quotients of the above.

e These objects have Mumford-Tate groups G and
corresponding Mumford-Tate domains D with compact
dual D = G(C)/P; this is a homogenous algebraic variety

defined over Q. 23/27



If D is non-classical then most points of D do not come
from geometry; intuitive reason is that because of the
differential constraint the image of a period mapping does
not contain an open set; the set of points of coming from
geometry is the complement of a countable union of
proper analytic subvarieties.

Nobody has exhibited an explicit H not coming from
geometry; assuming the generalized Hodge conjecture
(GHC) and the version due to André of Grothendieck's
generalized period conjecture (GPC), Kreutz gives a
necessary condition that H come from geometry.

With terms to be explained the result is

trdeg(H) < L(g) = H does not come from geometry.

H is defined over a field k if equivalently
- FP C V ®q k,
- F* e B(k). 2427



e Then the definition
tr deg(H) := min tr deg(k)
makes sense.

o As above H e D = G(C)/P where G = Mumford-Tate

group of H, and we define

Lis abelian} .

L(g) := min {codimg/pa:a C g™
Then

L(g) =0 <= D is a Hermitian symmetric domain
{L(g) >0 <= D is non-classical.

Theorem: Assuming (GHC) and (GPC), if
trdeg(H) < L(g)

the H does not come from geometry.
e Equivalently,

H comes from geometry = trdeg(H) = L(g). 2527



e For X defined over Q the GPC roughly says that the
relations over Q satisfied by the period matrix are
reflected in the Mumford-Tate group of the PHS. The
extension of the GHC to a general X is due to André is
essential for the proof.

e The argument also gives for H = H"(X) with
Mumford-Tate domain D and assuming GPC

trdeg H < dimD = X is not defined over Q.

Example: n =2 and H has Hodge numbers (2, b, 2)
H does not come}

trdeg(H) = b = {
from geometry

n =3 and H has Hodge numbers (1,1,1,1)
H does not come}

trdeg(H) £ 2 = {
from geometry
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