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K a finite extension of Qp.

X/K a smooth variety.

Syntomic regulator

regsyn : H
i
M(X ,Q(j)) → H i

syn(X , j)

regsyn can sometimes be computed using Coleman or Vologodsky

integration.
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Example: K2 of a curve X

regsyn : H
2
M(X ,Q(2) → H2

syn(X , 2) ∼= H1
dR(X/K )⊕ ∗.

∗ - The star of the talk, was ignored until recently, and for now we keep

neglecting it.
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To ω ∈ H1
dR(X/K ) associate rω = ω ∪ regsyn.

Theorem (B. 1999)
For ω ∈ Ω1(X ), rω({f , g}) =

∫
(f )

log(g)ω

Theorem (B. 2021)
In general same formula with Vologodsky integrals (certain restrictions on

ω)
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What you need to know about p-adic integration:

X/K smooth

Coleman integration (X has good reduction) gives a K -algebra OCol(X )

of locally analytic functions on X such that

0 → K → OCol(X )
d−→ OCol(X ) · Ω1(X )d=0 → 0

Vologodsky integration - Same for arbitrary reduction. Depends on the

branch of the p-adic logarithm, determined by log(p).

Coleman integrals depend on the branch only near singular points. The

dependency of Vologodsky integrals is more global.
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Goal: Show that it is interesting to differentiate a Vologodsky function

with respect to log(p).

Simplest and most important example: The p-adic logarithm:

If ν is the p-adic valuation such that ν(p) = 1, then

log(z) = log( z
pν(z) ) + ν(z) log(p) so d

d log(p) log(z) = ν(z).

Apply to the regulator K× → H1
st(K ,Qp(1)) = K ⊕Qp

x 7→ (log(x), ν(x))

We see the main Theme:

The regulator has 2 components, one ”continuous” and one ”discrete”.

The former is computed using Vologodsky integration, The latter is the

derivative of the former with respect to log(p).
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p-adic heights

(joint with Müller and Srinivasan)

Line bundle / variety / number field L/X/F

p-adic height hL̂ : X (F ) → Qp associated to

L̂ = L+ adelic metric ∥∥ν , ν finite

Where local metric for L/X/K , K local is

• For p-adic K a log function

log : L× : L − 0 → K

A Vologodsky function satisfying log(αw) = log(α) + log(w),

α ∈ K×, w ∈ Lx .

• For p ̸= q-adic K a valuation

val : L× :→ Q

satisfying val(αw) = ν(α) + val(w) where ν is the valuation on K×.
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Note:

• Valuations can be used for ?-adic heights, including ? = ∞.

• A good theory of log functions exists (see below).

Main observation: The derivative with respect to log(q) of a q-adic log

function is a q-adic valuation.
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Theory of log functions

Theorem (B.)
A log function on L/X has a curvature α ∈ H1

dR(X/K )⊗ Ω1(X ) cupping

to to ch1(L) (if possible). Conversely, any α cupping to ch1(L) is the
curvature of a log function on L, unique up to an integral of ω ∈ Ω1(X ).
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Dynamical situation

ϕ : X → X , ϕ∗L ∼= Ld .

We can try to fix a ”good” norm that makes this an isometry.

For valuations: Limiting techniques (Zhang, like Tate canonical height)

For log functions: Use a curvature α s.t. ϕ∗α = dα.

Observation: The log(q) derivative of a good log function is a good

valuation.
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So, we have two ways of constructing good valuations.

The latter has the following advantage:

If f : Y → X is a morphism, then f ∗ val is associated with f ∗ log, which

has curvature f ∗α, which (in principle) determines it.

Application: Y a curve, X its Jacobian. f : Y → X , ϕ = multiplication

by 2.
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Explicit computation on curves

On curves, curvature α =
∑

[η]i ⊗ ωi means that for any section s

log(s) =
∑∫ (

ωi

∫
ηi

)
+

∫
γ

where γ is a meromorphic form ”that takes care of poles”.

So we need to compute the dependency on log(p) of
∫
(ω

∫
η)

This can be done in the semi-stable reduction case using the work of

Katz-Litt.
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Explicit computation on curves

Consider

• X/K a complete curve with semi-stable reduction

• Γ = (V ,E ) the reduction graph

Graph convention: Each edge has a start e+ and end e− and a reversed

edge −e where the order is reversed.
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The Katz-Litt Theorem

This recovers Vologodsky integration from Coleman integration.

A loop as above going through an edge e gives rise to a monodromy

matrix A(e) (which is always unipotent).

Theorem
The association e → A(e) is harmonic in the sense that for each v ∈ V ,∑

e+=v log(A(e)) = 0.
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What does the derivative compute?

Case of unipotent albanese:

X/K a curve.

G = π1(X , x0) - Fundamental group in the category of filtered

(φ,N)-modules.

Albanese map: α : X (K ) → classifying set of G -torsors.

α(x) = space Px0,x of paths between x0 and x .

The ”continuous part” is computed using Vologodsky integrals:

Vologoksky gives a canonical path γx0,x,log(p) ∈ Px0,x giving a map

x 7→ γ−1
x0,x,log(p)

γ ∈ G/F 0, γ ∈ F 0Px0,x

which is tautologically given by Vologodsky integrals.
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The discrete part

Remember just (φ,N).

Frobenius is trivialized by the Vologodsky path.

Discrete unipotent Albanese into ”Space of monodromy operators on G”

The relation with the derivative of the continuous part:

γx0,x,log(p) = IHK,log(p)(γx0,x)

IHK,b = exp ((b − a)N) IHK,a

So deriving in log(p) picks up N.
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Syntomic regulators

We expect a similar picture:

Usually (not cycles) H i
syn(X , j) = H1

st(K ,M(j))

where M = H i−1
ét (X ,Qp)

H1
st is semi-stable cohomology

H1
st(K ,M) = Ext1 in the category of filtered (φ,N)-modules between

(Dst,DR) of Qp and M.

Discrete part - forget the filtration.

Continuous part computed with Vologodsky integrals.

log(p) derivative gives the discrete part.

16



Toric regulators

Joint work with Wayne Raskind

This is a new type of regulator

It applied to X/K with ”totally degenerate” (more or less semi-stable

with projective spaces as components) reduction.

Its target is a ”p-adic torous” CoKer : T 0 → T−1 ⊗ K×, T ∗ finitely

generated Z-modules.
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Some examples of toric regulators

• Identity map H1
M(K , 1) = K× → K×

• For E/K a Tate elliptic curve Gm/q
Z the identity map

H2
M(E , 1)0 ∼= E (K ) → K×/qZ

• More generally, for a Mumford curve X with Jacobian J, the Abel

map X (K ) → J(K ), J(K ) given via its p-adic uniformization.

• The Pal regulator: For X a Mumford curve with dual graph Γ

K2(X ) → H(Γ,K×) = Harmonic cochains
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Construction of the toric regulator

Special fiber Y decomposes as a union Y = ∪n
i=1Yi . s.t., with

YI =
⋂
i∈I

Yi , I ⊂ {1, . . . , n}

k , r ≥ 0

Mℓ = Hk
ét(X ⊗K K̄ ,Zℓ)

Theorem (Raskind and Xarles)
Ignoring finite torsion and cotorsion there are finitely generated

Z-moduels T i , i ∈ Z such that for each ℓ the Galois module Mℓ(r) have

an increasing filtration U with grU Mℓ(r) = ⊕iT
i ⊗ Zℓ(−i).

Proof: Rapoport-Zink weight spectral sequence for ℓ ̸= p

Mokrane + Hyodo + Tsuji when ℓ = p.

Assume trivial action of Gal(K̄/K ) on the T ’s.
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Construction of T ’s

ȲI := YI ⊗ F̄

Ȳ (m) =
⋃

|I |=m ȲI

C i,k
j = CH i+j−k(Ȳ (2k−i+1)), k ≥ max(0, i)

C i
j =

⊕
k C

i,k
j

Ir = I − {ir}

Inclusion ρr : YI → YIr

θi,m =
m+1∑
r=1

(−1)r−1ρ∗r : CH i (Ȳ (m)) → CH i (Ȳ (m+1)) ,

δi,m =
m+1∑
r=1

(−1)rρr∗ : CH i (Ȳ (m+1)) → CH i+1(Ȳ (m)) ,

d ′ =
⊕

k≥max(0,i)

θi+j−k,2k−i+1 ,

d ′′ =
⊕

k≥max(0,i)

θi+j−k,2k−i , 20



d i
j = d ′ + d ′′ : C i

j → C i+1
j

T i
j := H i (C•

j )

Renumbering: T i = T k−2r−2i
i+r

Monodromy map: N : T i → T i−1 given by ”identity on identical

components”.
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The toric intermediate Jacobian

M ′
ℓ = U0Mℓ(r)/U

−2Mℓ(r)

0 → T−1 ⊗ Zℓ(1) → M ′
ℓ → T 0 ⊗ Zℓ → 0

Use Bloch-Kato Hg . Boundary map

Ñℓ : T
0 ⊗ Zℓ → H1

g (K ,T−1)⊗ Zℓ(1)) ∼= T−1 ⊗ K×(ℓ)

Lemma

T 0 ⊗ Zℓ
Ñℓ−→ T−1 ⊗ K×(ℓ) val−→ T−1 ⊗ Zℓ is N ⊗ Zℓ.

Corollary

Exists T 0 Ñ−→ T−1 ⊗ K× s.t. Ñℓ = Ñ ⊗ Zℓ for each ℓ

We define the toric intermediate Jacobian

Hk+1
T (X ,Z(r)) := CoKer Ñ
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Toric regulator completed at ℓ

The etale regulator map regℓ : H
k+1
M (X ,Z(r))0 → H1

g (K ,Mℓ(r)) factors

via H1
g (K ,U0Mℓ(r)) because H

0(K ,Qℓ(j)) = H1
g (K ,Qℓ(j)) = 0 for j < 0.

Applying U0 → M ′
ℓ we get

reg′′ℓ : Hk+1
M (X ,Z(r))0 → H1

g (K ,M ′
ℓ)

∼= CoKer(T 0⊗Zℓ
Ñℓ−→ T−1⊗K×(ℓ))
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The Sreekantan regulator

Targets in ”Deligne style cohomology”. In most cases this is

Hk+1
D (X ,Q(r)) ∼= CoKer(T 0

Q → T−1
Q )

Assuming standard conjectures Sreekantan’s Deligne cohomology is

isomorphic to higher Chow groups of the special fiber

Hk+1
D (X ,Q(r)) ∼= CH r−1(Y , 2r − k − 2)⊗Q

and the regulator is just a boundary map in K-theory.

Conjecture
For each prime ℓ the valuation of the toric regulator at ℓ is the

Sreekantan regulator tensored with Qℓ.

Theorem

Assuming Conjecture, Exists Hk+1
M (X ,Z(r)) regt−−→ Hk+1

T (X ,Z(r)) giving
the toric regulator at ℓ for each ℓ by completion.
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Relation with the log-syntomic regulator

Moto: The log-syntomic regulator is the logarithm of the toric regulator.

Natural since: ”The syntomic Abel-Jacobi map is the log composed with

Albanese”

regsyn : H
k+1
M (X ,Z(r))0 → H1

st(K ,V ), V = Hk
ét(X ⊗K K̄ ,Qp(r))

Commuting diagram

Hk+1
M (X ,Z(r))0 //

��

H1
st(K ,V ) // DR(V )/(F 0 + T 0 ⊗Qp)

��
Hk+1

T (X ,Z(r))
log // T−1 ⊗ K/T 0 ⊗Qp.
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Expectation: The derivative with respect to log(p) of the syntomic

regulator gives the Sreekantan regulator.

This can be checked for example on K2 of Mumford curves.

X a Mumford curve with dual graph Γ = (V ,E )

Yv - component of reduction

The Sreekantan regulator

K2(X ) → (v 7→ k(Yv )
×) → H(Γ,Z)

{f , g} 7→ (v 7→ hv = tYv (f , g)) 7→ (e 7→ orde (he+)− orde (he−))

The syntomic regulator

K2(X ) → H(Γ,K ), {f , g} 7→ rese log(f )d log(g)

Suppose ordYv (f , g) = (1, 0). Then log(f )d log(g) = log(p)d log(g) + . . .

so
d

d log(p)
rese log(f )d log(g) = rese d log(g) = orde(g |Yv )
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