Regulators and derivatives of Vologodsky functions with respect to $log(p)$

Regulators V, Pisa

Amnon Besser

June 12, 2024

Ben-Gurion University of the Negev

K a finite extension of \mathbb{Q}_p .

 X/K a smooth variety.

Syntomic regulator

$$
\operatorname{reg}_{\operatorname{syn}}: H^i_{\mathcal{M}}(X, \mathbb{Q}(j)) \to H^i_{\operatorname{syn}}(X, j)
$$

reg_{syn} can sometimes be computed using Coleman or Vologodsky integration.

Example: K_2 of a curve X

 $\mathrm{reg}_{syn}: H^2_{\mathcal{M}}(X,\mathbb{Q}(2) \to H^2_{syn}(X,2) \cong H^1_{dR}(X/K) \oplus *$.

∗ - The star of the talk, was ignored until recently, and for now we keep neglecting it.

To $\omega \in H^1_{\rm dR}(X/K)$ associate $r_\omega = \omega \cup \mathsf{reg}_{\mathsf{syn}}.$

Theorem (B. 1999) For $\omega \in \Omega^1(\mathcal{X})$, $r_\omega(\lbrace f, g \rbrace)=\int_{(f)}\log(g)\omega$

Theorem (B. 2021) In general same formula with Vologodsky integrals (certain restrictions on ω)

 X/K smooth

Coleman integration (X has good reduction) gives a K-algebra $\mathcal{O}_{\text{Col}}(X)$ of locally analytic functions on X such that

$$
0 \to \mathcal{K} \to \mathcal{O}_{\mathsf{Col}}(X) \xrightarrow{d} \mathcal{O}_{\mathsf{Col}}(X) \cdot \Omega^1(X)^{d=0} \to 0
$$

Vologodsky integration - Same for arbitrary reduction. Depends on the branch of the *p*-adic logarithm, determined by $log(p)$.

Coleman integrals depend on the branch only near singular points. The dependency of Vologodsky integrals is more global.

Goal: Show that it is interesting to differentiate a Vologodsky function with respect to $log(p)$.

Simplest and most important example: The p-adic logarithm:

If v is the p-adic valuation such that $\nu(p) = 1$, then $\log(z) = \log(\frac{z}{p^{\nu(z)}}) + \nu(z) \log(p)$ so $\frac{d}{d \log(p)} \log(z) = \nu(z)$. Apply to the regulator $K^\times \to H^1_{\mathrm{st}}(K, \mathbb{Q}_p(1)) = K \oplus \mathbb{Q}_p$ $x \mapsto (\log(x), \nu(x))$

We see the main Theme:

The regulator has 2 components, one "continuous" and one "discrete". The former is computed using Vologodsky integration, The latter is the derivative of the former with respect to $log(p)$.

p-adic heights

(joint with Müller and Srinivasan) Line bundle / variety / number field $\mathcal{L}/X/F$ p-adic height $h_{\hat{c}} : X(F) \to \mathbb{Q}_p$ associated to $\hat{\mathcal{L}} = \mathcal{L} + \text{ adelic metric } || ||_{\nu}, \quad \nu \text{ finite}$

Where local metric for $\mathcal{L}/X/K$, K local is

• For p-adic K a log function

 $\log : \mathcal{L}^{\times} : \mathcal{L} - 0 \rightarrow \overline{\mathcal{K}}$

A Vologodsky function satisfying $log(\alpha w) = log(\alpha) + log(w)$, $\alpha \in K^{\times}$, $w \in \mathcal{L}_{x}$.

• For $p \neq q$ -adic K a valuation

$$
\mathsf{val} : \mathcal{L}^\times : \rightarrow \mathbb{Q}
$$

satisfying val $(\alpha w) = \nu(\alpha) + \text{val}(w)$ where ν is the valuation on K^\times .

Note:

- Valuations can be used for ?-adic heights, including $? = \infty$.
- A good theory of log functions exists (see below).

Main observation: The derivative with respect to $log(q)$ of a q-adic log function is a q-adic valuation.

Theorem (B.) A log function on ${\mathcal L}/X$ has a curvature $\alpha \in H^1_{\rm dR}(X/K)\otimes\Omega^1(X)$ cupping to to ch₁(L) (if possible). Conversely, any α cupping to ch₁(L) is the curvature of a log function on $\mathcal L$, unique up to an integral of $\omega\in\Omega^1(X).$ $\phi: X \to X$, $\phi^* \mathcal{L} \cong \mathcal{L}^d$.

We can try to fix a "good" norm that makes this an isometry.

For valuations: Limiting techniques (Zhang, like Tate canonical height)

For log functions: Use a curvature α s.t. $\phi^* \alpha = d\alpha$.

Observation: The $log(q)$ derivative of a good log function is a good valuation.

So, we have two ways of constructing good valuations.

The latter has the following advantage:

If $f: Y \to X$ is a morphism, then f^* val is associated with f^* log, which has curvature $f^*\alpha$, which (in principle) determines it.

Application: Y a curve, X its Jacobian. $f: Y \to X$, $\phi =$ multiplication by 2.

On curves, curvature $\alpha=\sum[\eta]_i\otimes\omega_i$ means that for any section s

$$
\log(s) = \sum \int \left(\omega_i \int \eta_i\right) + \int \gamma
$$

where γ is a meromorphic form "that takes care of poles".

So we need to compute the dependency on log(p) of $\int (\omega \int \eta)$

This can be done in the semi-stable reduction case using the work of Katz-Litt.

Explicit computation on curves

Consider

- X/K a complete curve with semi-stable reduction
- $\Gamma = (V, E)$ the reduction graph

Graph convention: Each edge has a start $e+$ and end $e-$ and a reversed edge –e where the order is reversed.

The Katz-Litt Theorem

This recovers Vologodsky integration from Coleman integration.

A loop as above going through an edge e gives rise to a monodromy matrix $A(e)$ (which is always unipotent).

Theorem

The association $e \rightarrow A(e)$ is harmonic in the sense that for each $v \in V$, $\sum_{e+={\rm v}}\log(A(e))=0.$

Case of unipotent albanese:

 X/K a curve.

 $G = \pi_1(X, x_0)$ - Fundamental group in the category of filtered (φ, N) -modules.

Albanese map: α : $X(K) \rightarrow$ classifying set of G-torsors.

 $\alpha(x)$ = space $P_{x_0,x}$ of paths between x_0 and x.

The "continuous part" is computed using Vologodsky integrals:

Vologoksky gives a canonical path $\gamma_{x_0,x,\log(p)} \in P_{x_0,x}$ giving a map

$$
x \mapsto \gamma_{x_0,x,\log(p)}^{-1} \gamma \in G/F^0, \quad \gamma \in F^0P_{x_0,x}
$$

which is tautologically given by Vologodsky integrals.

Remember just (φ, N) .

Frobenius is trivialized by the Vologodsky path.

Discrete unipotent Albanese into "Space of monodromy operators on G"

The relation with the derivative of the continuous part:

$$
\gamma_{x_0,x,\log(p)} = I_{HK,\log(p)}(\gamma_{x_0,x})
$$

 $I_{HK,b} = \exp((b - a)N)I_{HK,a}$

So deriving in $log(p)$ picks up N.

We expect a similar picture:

Usually (not cycles) $H^i_{\text{syn}}(X, j) = H^1_{\text{st}}(K, M(j))$ where $M = H^{i-1}_{\text{\'et}}(\overline{X}, \mathbb{Q}_p)$

 $H^1_{\rm st}$ is semi-stable cohomology

 $H^1_{\text{st}}(K,M) = \text{Ext}^1$ in the category of filtered (φ, N) -modules between (D_{st}, DR) of \mathbb{Q}_p and M.

Discrete part - forget the filtration.

Continuous part computed with Vologodsky integrals.

 $log(p)$ derivative gives the discrete part.

Joint work with Wayne Raskind

This is a new type of regulator

It applied to X/K with "totally degenerate" (more or less semi-stable with projective spaces as components) reduction.

Its target is a " p -adic torous" <code>CoKer</code> : $\mathcal{T}^{0} \rightarrow \mathcal{T}^{-1} \otimes K^{\times}$, \mathcal{T}^{*} finitely generated Z-modules.

- Identity map $H^1_{\mathcal{M}}(K,1) = K^\times \to K^\times$
- $\bullet\,$ For E/K a Tate elliptic curve $\mathbb{G}_m/q^{\mathbb{Z}}$ the identity map

$$
H^2_{\mathcal{M}}(E,1)_0\cong E(K)\to K^\times/q^{\mathbb{Z}}
$$

- More generally, for a Mumford curve X with Jacobian J, the Abel map $X(K) \to J(K)$, $J(K)$ given via its *p*-adic uniformization.
- The Pal regulator: For X a Mumford curve with dual graph Γ

 $\mathsf{K}_{2}(X)\rightarrow\mathcal{H}(\Gamma,K^{\times})=\;$ Harmonic cochains

Special fiber Y decomposes as a union $Y = \cup_{i=1}^n Y_i$. s.t., with

$$
Y_I = \bigcap_{i \in I} Y_i, I \subset \{1, \ldots, n\}
$$

 $k, r > 0$

 $M_\ell = H^k_\mathrm{\acute{e}t}(X \otimes_K \bar{K}, \mathbb{Z}_\ell)$

Theorem (Raskind and Xarles)

Ignoring finite torsion and cotorsion there are finitely generated $\mathbb Z$ -moduels $\mathsf T^i$, $i\in\mathbb Z$ such that for each ℓ the Galois module $\mathsf M_\ell(r)$ have an increasing filtration U with $\operatorname{gr}_U M_\ell(r) = \oplus_i T^i \otimes \mathbb{Z}_\ell(-i).$

Proof: Rapoport-Zink weight spectral sequence for $\ell \neq p$

Mokrane + Hyodo + Tsuji when $\ell = p$.

Assume trivial action of Gal(\overline{K}/K) on the T's.

Construction of T 's

$$
\begin{aligned}\n\bar{Y}_l &:= Y_l \otimes \bar{F} \\
\bar{Y}^{(m)} &= \bigcup_{|I|=m} \bar{Y}_I \\
C_j^{i,k} &= CH^{i+j-k}(\bar{Y}^{(2k-i+1)}), \ k \ge \max(0, i) \\
C_j^i &= \bigoplus_k C_j^{i,k} \\
I_r &= I - \{i_r\}\n\end{aligned}
$$

Inclusion $\rho_r: Y_I \to Y_I$

$$
\theta_{i,m} = \sum_{r=1}^{m+1} (-1)^{r-1} \rho_r^* : CH^i(\bar{Y}^{(m)}) \to CH^i(\bar{Y}^{(m+1)}),
$$

\n
$$
\delta_{i,m} = \sum_{r=1}^{m+1} (-1)^r \rho_{r*} : CH^i(\bar{Y}^{(m+1)}) \to CH^{i+1}(\bar{Y}^{(m)}),
$$

\n
$$
d' = \bigoplus_{k \ge \max(0,i)} \theta_{i+j-k,2k-i+1},
$$

\n
$$
d'' = \bigoplus_{k \ge \max(0,i)} \theta_{i+j-k,2k-i},
$$

 $k>max(0,i)$

 $d^i_j = d' + d'' : C^i_j \rightarrow C^{i+1}_j$ $T^i_j := H^i(C^{\bullet}_j)$ Renumbering: $T^i = T^{k-2r-2i}_{i+r}$

Monodromy map: $N: T^i \rightarrow T^{i-1}$ given by "identity on identical components".

$$
M'_\ell = U^0 M_\ell(r) / U^{-2} M_\ell(r)
$$

$$
0\to\mathcal{T}^{-1}\otimes \mathbb{Z}_\ell(1)\to M'_\ell\to\mathcal{T}^0\otimes \mathbb{Z}_\ell\to 0
$$

Use Bloch-Kato H_g . Boundary map

$$
\tilde{\mathsf{N}}_\ell:T^0\otimes\mathbb{Z}_\ell\to H^1_g(K,\,T^{-1})\otimes\mathbb{Z}_\ell(1))\cong\,\textit{T}^{-1}\otimes\textit{K}^{\times(\ell)}
$$

Lemma

$$
\mathcal{T}^0\otimes \mathbb{Z}_{\ell}\stackrel{\tilde{N}_{\ell}}{\longrightarrow} \mathcal{T}^{-1}\otimes K^{\times (\ell)}\stackrel{\text{val}}{\longrightarrow} \mathcal{T}^{-1}\otimes \mathbb{Z}_{\ell} \text{ is } N\otimes \mathbb{Z}_{\ell}.
$$

Corollary

Exists $\mathcal{T}^0\stackrel{\tilde{N}}{\longrightarrow}\mathcal{T}^{-1}\otimes \mathcal{K}^\times$ s.t. $\tilde{N}_\ell=\tilde{N}\otimes \mathbb{Z}_\ell$ for each ℓ

We define the toric intermediate Jacobian

$$
H^{k+1}_\mathcal{T}(X,\mathbb{Z}(r)):=\mathsf{Coker}\,\tilde{N}
$$

The etale regulator map ${\rm reg}_\ell: H^{k+1}_{\mathcal M}(X,{{\mathbb Z}}(r))_0\to H^{1}_{\cal g}(K,M_\ell(r))$ factors via $H^1_g(K, U^0M_\ell(r))$ because $H^0(K, \mathbb Q_\ell(j))=H^1_g(K, \mathbb Q_\ell(j))=0$ for $j< 0$. Applying $U^0 \rightarrow M'_\ell$ we get

 ${\sf reg}''_{\ell}: H^{k+1}_{\mathcal{M}}(X,{{\mathbb Z}}(r))_0\to H^{1}_{\cal E}(K,M'_{\ell})\cong {\sf Coker}(\,T^0\otimes {{\mathbb Z}}_{\ell} \stackrel{\tilde{N}_{\ell}}{\longrightarrow} \,T^{-1}\otimes K^{\times (\ell)})$

Targets in "Deligne style cohomology". In most cases this is $H^{k+1}_\mathcal{D}(X,\mathbb{Q}(r))\cong\mathsf{Coker}(\mathcal{T}^0_\mathbb{Q}\to\mathcal{T}^{-1}_\mathbb{Q})$

Assuming standard conjectures Sreekantan's Deligne cohomology is isomorphic to higher Chow groups of the special fiber

$$
H^{k+1}_D(X,\mathbb{Q}(r))\cong CH^{r-1}(Y,2r-k-2)\otimes \mathbb{Q}
$$

and the regulator is just a boundary map in K-theory.

Conjecture

For each prime ℓ the valuation of the toric regulator at ℓ is the Sreekantan regulator tensored with \mathbb{Q}_{ℓ} .

Theorem

Assuming Conjecture, Exists $H^{k+1}_\mathcal{M}(X,\mathbb{Z}(r)) \xrightarrow{\operatorname{reg}_t} H^{k+1}_\mathcal{T}(X,\mathbb{Z}(r))$ giving the toric regulator at ℓ for each ℓ by completion.

Moto: The log-syntomic regulator is the logarithm of the toric regulator. Natural since: "The syntomic Abel-Jacobi map is the log composed with Albanese"

 ${\rm reg}_{\rm syn}: H^{k+1}_{\mathcal M}(X,{{\mathbb Z}}(r))_0\to H^1_{\rm st}({K},{{V}}),\;{V}=H^k_{\rm \acute{e}t}(X\otimes_K{\bar K},{{\mathbb Q}}_p(r))$ Commuting diagram

$$
H_{\mathcal{M}}^{k+1}(X,\mathbb{Z}(r))_0 \longrightarrow H_{\mathrm{st}}^1(K,V) \longrightarrow \mathrm{DR}(V)/(\digamma^0 + \top^0 \otimes \mathbb{Q}_p)
$$

\n
$$
\downarrow \qquad \qquad \downarrow
$$
\n
$$
H_{\mathcal{T}}^{k+1}(X,\mathbb{Z}(r)) \longrightarrow \qquad \qquad \downarrow
$$
\n
$$
\downarrow
$$
\n
$$
T^{-1} \otimes K/\top^0 \otimes \mathbb{Q}_p.
$$

Expectation: The derivative with respect to $log(p)$ of the syntomic regulator gives the Sreekantan regulator.

This can be checked for example on K_2 of Mumford curves.

X a Mumford curve with dual graph $\Gamma = (V, E)$

 Y_v - component of reduction

The Sreekantan regulator

$$
\mathsf{K}_2(X)\to (v\mapsto k(Y_v)^\times)\to \mathcal{H}(\Gamma,\mathbb{Z})
$$

$$
\{f,g\}\mapsto (v\mapsto h_v=t_{Y_v}(f,g))\mapsto (e\mapsto \text{ord}_e(h_{e+})-\text{ord}_e(h_{e-}))
$$

The syntomic regulator

$$
\mathsf{K}_2(X) \to \mathcal{H}(\Gamma,\mathsf{K}), \quad \{f,g\} \mapsto \mathsf{res}_e \log(f) d \log(g)
$$

Suppose ord $_{Y_{\nu}}(f,g)=(1,0).$ Then $\log(f)d\log(g)=\log(p)d\log(g)+\ldots$ so d $\frac{d}{d \log(p)}$ res_e log (f) d log (g) = res_e d log (g) = ord_e $(g|_{Y_v})$