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K a finite extension of Q.
X /K a smooth variety.

Syntomic regulator
regeyn + Hiv (X, Q()) = Hayn(X,))

regs,n can sometimes be computed using Coleman or Vologodsky
integration.



Example: K, of a curve X
regoyn : sz\,l(X,Q(2) — Hszyn(X,2) &~ H(}R(X/K) P *.

x - The star of the talk, was ignored until recently, and for now we keep

neglecting it.



To w € Hir(X/K) associate r,, = w U reg,,.

Theorem (B. 1999)
For w € QY(X), r,({f,g}) = f(f) log(g)w

Theorem (B. 2021)
In general same formula with Vologodsky integrals (certain restrictions on

w)



What you need to know about p-adic integration:

X /K smooth
Coleman integration (X has good reduction) gives a K-algebra Ocqi(X)

of locally analytic functions on X such that

0= K = Ocol(X) L Oca(X) - Q1(X)?0 = 0

Vologodsky integration - Same for arbitrary reduction. Depends on the
branch of the p-adic logarithm, determined by log(p).

Coleman integrals depend on the branch only near singular points. The
dependency of Vologodsky integrals is more global.



Goal: Show that it is interesting to differentiate a Vologodsky function
with respect to log(p).

Simplest and most important example: The p-adic logarithm:

If v is the p-adic valuation such that v(p) = 1, then
log(z) = log( %) + v(2) log(p) so #g(p) log(z) = v(z).
Apply to the regulator K* — HL(K,Q,(1)) = K ® Q,
x = (log(x), ¥(x))

We see the main Theme:

The regulator has 2 components, one " continuous” and one "discrete”.
The former is computed using Vologodsky integration, The latter is the
derivative of the former with respect to log(p).



p-adic heights

(joint with Miiller and Srinivasan)
Line bundle / variety / number field £L/X/F
p-adic height h; : X(F) — Q, associated to

L = L+ adelic metric ||||,, v finite

Where local metric for £L/X /K, K local is
e For p-adic K a log function
log : LX:L—-0—= K
A Vologodsky function satisfying log(aw) = log(a) + log(w),

ae KX weL,.
e For p # g-adic K a valuation

val : LX: = Q

satisfying val(aw) = v(«) + val(w) where v is the valuation on K*.



Note:

e Valuations can be used for 7-adic heights, including 7 = oc.

e A good theory of log functions exists (see below).

Main observation: The derivative with respect to log(g) of a g-adic log
function is a g-adic valuation.



Theory of log functions

Theorem (B.)
A log function on L/X has a curvature o € Hig(X/K) ® QY(X) cupping

to to chi(L) (if possible). Conversely, any o cupping to chi(L) is the
curvature of a log function on L, unique up to an integral of w € Q}(X).



Dynamical situation

¢: X=X, p*L=L.

We can try to fix a "good” norm that makes this an isometry.

For valuations: Limiting techniques (Zhang, like Tate canonical height)
For log functions: Use a curvature « s.t. ¢*a = da.

Observation: The log(q) derivative of a good log function is a good
valuation.



So, we have two ways of constructing good valuations.
The latter has the following advantage:

If f:Y — X is a morphism, then f*val is associated with f* log, which
has curvature f*«, which (in principle) determines it.

Application: Y a curve, X its Jacobian. f: Y — X, ¢ = multiplication
by 2.
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Explicit computation on curves

On curves, curvature oo = Y [n]; ® w; means that for any section s

o3[ (+f)- ]

where 7 is a meromorphic form "that takes care of poles”.
So we need to compute the dependency on log(p) of [(w [ n)

This can be done in the semi-stable reduction case using the work of
Katz-Litt.
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Explicit computation on curves

Consider

e X /K a complete curve with semi-stable reduction
e [ = (V, E) the reduction graph

‘o ph

§:(V1E> VQC’\QC{-‘(L sV ap
=",

Graph convention: Each edge has a start e+ and end e— and a reversed

edge —e where the order is reversed.
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The Katz-Litt Theorem

This recovers Vologodsky integration from Coleman integration.

A loop as above going through an edge e gives rise to a monodromy
matrix A(e) (which is always unipotent).

Theorem
The association e — A(e) is harmonic in the sense that for each v € V,

Ze+:v |0g(A(e)) =0.
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What does the derivative compute?

Case of unipotent albanese:
X/K a curve.

G = m1(X, x0) - Fundamental group in the category of filtered
(¢, N)-modules.

Albanese map: « : X(K) — classifying set of G-torsors.

a(x) = space Py, x of paths between xg and x.

The "continuous part” is computed using Vologodsky integrals:

Vologoksky gives a canonical path 7, x og(p) € Px,.x giving a map
X 7x_o.,lx,mg(p)’)’ € G/F°, € FPyqx

which is tautologically given by Vologodsky integrals.
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The discrete part

Remember just (¢, N).

Frobenius is trivialized by the Vologodsky path.

Discrete unipotent Albanese into " Space of monodromy operators on G"
The relation with the derivative of the continuous part:

Vxo0,x,log(p) = /HK,|og(p)(7x0,x)

k.o =exp ((b— a)N) hk,a

So deriving in log(p) picks up N.
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Syntomic regulators

We expect a similar picture:

Usually (not cycles) H.,(X,j) = HL(K, M()))
where M = H., 1(X,Q,)

HZ is semi-stable cohomology

HL (K, M) = Ext" in the category of filtered (¢, N)-modules between
(Dst, DR) of Qp and M.

Discrete part - forget the filtration.
Continuous part computed with Vologodsky integrals.

log(p) derivative gives the discrete part.
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Toric regulators

Joint work with Wayne Raskind
This is a new type of regulator

It applied to X /K with "totally degenerate” (more or less semi-stable
with projective spaces as components) reduction.

Its target is a " p-adic torous” CoKer: T® — Tt ® K>, T* finitely
generated Z-modules.
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Some examples of toric regulators

Identity map Hj,(K,1) = K* — K*
e For E/K a Tate elliptic curve G,,/q” the identity map

Hi(E, 1)o = E(K) = K*/q"

e More generally, for a Mumford curve X with Jacobian J, the Abel
map X(K) — J(K), J(K) given via its p-adic uniformization.
The Pal regulator: For X a Mumford curve with dual graph I

Ka(X) — H(I', K*) = Harmonic cochains
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Construction of the toric regulator

Special fiber Y decomposes as a union Y = U7_; Y;. s.t., with

Yi=(\Ynlc{l...,n}
iel
k,r>0
M, = HE(X ®k K, Zy)

Theorem (Raskind and Xarles)
Ignoring finite torsion and cotorsion there are finitely generated

Z-moduels T', i € Z such that for each ¢ the Galois module M(r) have
an increasing filtration U with gry, My(r) = @; T @ Z¢(—i).

Proof: Rapoport-Zink weight spectral sequence for £ # p
Mokrane + Hyodo + Tsuji when ¢ = p.

Assume trivial action of Gal(K/K) on the T's.
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Construction of T'’s
\_// =Y ® F

V) = Uy Vi

ik itj—k (v (2k—it1 .
G = CHH=k(Y( )), k > max(0, i)

= D Cjk
=1—{i}
Inclusion p, : Y; — Y},
m-+1
Oim=>_(~1)1pr s CHI(Y(M) - CHI(Y(mHD))
r=1
m+1 o . .
O = Z ) Prs (y(m+1)) N CHHrl(y(m)) 7
d @ Oitj—k2k—i+1 5
k>max(0,/)
d’ = @ Oitj—k2k—i 5
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i - i+1
di=d+d":C—C

7'jl = HI(C].)

i Tk—2r—2i
Renumbering: T' = T, "~
Monodromy map: N : T/ — T/~ given by "identity on identical

components”.
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The toric intermediate Jacobian

M) = U°M,(r)/U=2M,(r)

0> T1®Z(1) > M, - T°®Z;—0

Use Bloch-Kato H,. Boundary map

Ny : TO®Z¢ — HY(K, T @ Zy(1)) 2 Tt @ K*©)

Lemma i
TO97Z Mo Tl kxO 2 T-197, is N® Z.

Corollary

Exists TO Yy 71 @ K* s.t. Ny = N ® Zy for each ¢

We define the toric intermediate Jacobian
Hé‘-*l(X, Z(r)) := CoKer N
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Toric regulator completed at /

The etale regulator map reg, : Hir (X, Z(r))o — Hz (K, My(r)) factors
via HX(K, U°M,(r)) because H(K,Q¢(j)) = Ha(K,Qe(j)) = 0 for j < 0.

Applying U° — M we get

regy : HIH (X, Z(r))o — HA(K, M}) = CoKer(TO ®Z; % T-1 e k*(®)

23



The Sreekantan regulator

Targets in " Deligne style cohomology”. In most cases this is
HEM™ (X, Q(r)) = CoKer(T — Tg')

Assuming standard conjectures Sreekantan’s Deligne cohomology is
isomorphic to higher Chow groups of the special fiber

HEP (X, Q(r)) = CH™Y(Y,2r —k—2) ® Q

and the regulator is just a boundary map in K-theory.

Conjecture
For each prime { the valuation of the toric regulator at ¢ is the

Sreekantan regulator tensored with Q.

Theorem
Assuming Conjecture, Exists HXH (X, Z(r)) =2t HEFY(X, Z(r)) giving
the toric regulator at ¢ for each { by completion.
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Relation with the log-syntomic regulator

Moto: The log-syntomic regulator is the logarithm of the toric regulator.

Natural since: " The syntomic Abel-Jacobi map is the log composed with
Albanese”

regoyn + HALH (X Z(r)o — HE(K, V), V = HE(X @k K, Qp(r))

Commuting diagram

HIEH (X, Z(r))o — HA(K, V) —= DR(V)/(F° + T° & Q)

| |

|
HEFL (X, Z(r)) o8 Tl9K/T'®Q,.
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Expectation: The derivative with respect to log(p) of the syntomic
regulator gives the Sreekantan regulator.

This can be checked for example on K, of Mumford curves.
X a Mumford curve with dual graph I = (V, E)
Y, - component of reduction
The Sreekantan regulator
Ka(X) = (v k(Y,))) = H(T,Z)
{f,g}— (v—= h, =ty (f,g)) — (e — orde (het) — orde (he—))

The syntomic regulator

Ka(X) = H(T,K), {f,g} > reselog(f)dlog(g)

Suppose ordy, (f,g) = (1,0). Then log(f)d log(g) = log(p)d log(g) + - ..
so

rese log(f)d log(g) = res. dlog(g) = orde(glv,)

d
d log(p)
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