Regulators and derivatives of Vologodsky functions with respect to log(p)

Regulators V, Pisa

Amnon Besser

June 12, 2024

Ben-Gurion University of the Negev

K a finite extension of \mathbb{Q}_p .

X/K a smooth variety.

Syntomic regulator

$$\operatorname{reg}_{\operatorname{syn}}: H^i_{\mathcal{M}}(X, \mathbb{Q}(j)) \to H^i_{\operatorname{syn}}(X, j)$$

 $\mathsf{reg}_\mathsf{syn}$ can sometimes be computed using Coleman or Vologodsky integration.

Example: K_2 of a curve X

 $\operatorname{reg}_{\operatorname{syn}}: H^2_{\mathcal{M}}(X, \mathbb{Q}(2) \to H^2_{\operatorname{syn}}(X, 2) \cong H^1_{\operatorname{dR}}(X/K) \oplus \ast.$

 \ast - The star of the talk, was ignored until recently, and for now we keep neglecting it.

To $\omega \in H^1_{dR}(X/K)$ associate $r_\omega = \omega \cup \operatorname{reg}_{syn}$.

Theorem (B. 1999) For $\omega \in \Omega^1(X)$, $r_{\omega}(\{f,g\}) = \int_{(f)} \log(g) \omega$

Theorem (B. 2021) In general same formula with Vologodsky integrals (certain restrictions on ω) X/K smooth

Coleman integration (X has good reduction) gives a K-algebra $\mathcal{O}_{Col}(X)$ of locally analytic functions on X such that

$$0 o K o \mathcal{O}_{\mathsf{Col}}(X) \xrightarrow{d} \mathcal{O}_{\mathsf{Col}}(X) \cdot \Omega^1(X)^{d=0} o 0$$

Vologodsky integration - Same for arbitrary reduction. Depends on the branch of the *p*-adic logarithm, determined by log(p).

Coleman integrals depend on the branch only near singular points. The dependency of Vologodsky integrals is more global.

Goal: Show that it is interesting to differentiate a Vologodsky function with respect to log(p).

Simplest and most important example: The *p*-adic logarithm:

If ν is the *p*-adic valuation such that $\nu(p) = 1$, then $\log(z) = \log(\frac{z}{p^{\nu(z)}}) + \nu(z)\log(p)$ so $\frac{d}{d\log(p)}\log(z) = \nu(z)$. Apply to the regulator $K^{\times} \to H^1_{st}(K, \mathbb{Q}_p(1)) = K \oplus \mathbb{Q}_p$ $x \mapsto (\log(x), \nu(x))$

We see the main Theme:

The regulator has 2 components, one "continuous" and one "discrete". The former is computed using Vologodsky integration, The latter is the derivative of the former with respect to log(p).

p-adic heights

(joint with Müller and Srinivasan) Line bundle / variety / number field $\mathcal{L}/X/F$ p-adic height $h_{\hat{\mathcal{L}}} : X(F) \to \mathbb{Q}_p$ associated to $\hat{\mathcal{L}} = \mathcal{L} + \text{ adelic metric } |||_{\nu}, \quad \nu \text{ finite}$

Where local metric for $\mathcal{L}/X/K$, K local is

• For *p*-adic *K* a log function

 $\log:\mathcal{L}^{\times}:\mathcal{L}-0\to\overline{K}$

A Vologodsky function satisfying $\log(\alpha w) = \log(\alpha) + \log(w)$, $\alpha \in K^{\times}$, $w \in \mathcal{L}_{x}$.

• For $p \neq q$ -adic K a valuation

$$\mathsf{val}:\mathcal{L}^{\times}:\to\mathbb{Q}$$

satisfying val $(\alpha w) = \nu(\alpha) + val(w)$ where ν is the valuation on K^{\times} .

Note:

- Valuations can be used for ?-adic heights, including $? = \infty$.
- A good theory of log functions exists (see below).

Main observation: The derivative with respect to log(q) of a q-adic log function is a q-adic valuation.

Theorem (B.) A log function on \mathcal{L}/X has a curvature $\alpha \in H^1_{dR}(X/K) \otimes \Omega^1(X)$ cupping to to $ch_1(\mathcal{L})$ (if possible). Conversely, any α cupping to $ch_1(\mathcal{L})$ is the curvature of a log function on \mathcal{L} , unique up to an integral of $\omega \in \Omega^1(X)$.

 $\phi: X \to X$, $\phi^* \mathcal{L} \cong \mathcal{L}^d$.

We can try to fix a "good" norm that makes this an isometry.

For valuations: Limiting techniques (Zhang, like Tate canonical height) For log functions: Use a curvature α s.t. $\phi^* \alpha = d\alpha$.

Observation: The log(q) derivative of a good log function is a good valuation.

So, we have two ways of constructing good valuations.

The latter has the following advantage:

If $f: Y \to X$ is a morphism, then f^* val is associated with $f^* \log$, which has curvature $f^*\alpha$, which (in principle) determines it.

Application: Y a curve, X its Jacobian. $f: Y \to X$, $\phi =$ multiplication by 2.

On curves, curvature $\alpha = \sum [\eta]_i \otimes \omega_i$ means that for any section s

$$\log(s) = \sum \int \left(\omega_i \int \eta_i\right) + \int \gamma$$

where γ is a meromorphic form "that takes care of poles".

So we need to compute the dependency on $\log(p)$ of $\int (\omega \int \eta)$

This can be done in the semi-stable reduction case using the work of Katz-Litt.

Explicit computation on curves

Consider

- X/K a complete curve with semi-stable reduction
- $\Gamma = (V, E)$ the reduction graph

Graph convention: Each edge has a start e+ and end e- and a reversed edge -e where the order is reversed.

The Katz-Litt Theorem

This recovers Vologodsky integration from Coleman integration.

A loop as above going through an edge e gives rise to a monodromy matrix A(e) (which is always unipotent).

Theorem

The association $e \to A(e)$ is harmonic in the sense that for each $v \in V$, $\sum_{e+=v} \log(A(e)) = 0$.

Case of unipotent albanese:

X/K a curve.

 $G = \pi_1(X, x_0)$ - Fundamental group in the category of filtered (φ, N) -modules.

Albanese map: $\alpha: X(K) \rightarrow$ classifying set of *G*-torsors.

 $\alpha(x) = \text{space } P_{x_0,x} \text{ of paths between } x_0 \text{ and } x.$

The "continuous part" is computed using Vologodsky integrals:

Vologoksky gives a canonical path $\gamma_{x_0,x,\log(p)} \in P_{x_0,x}$ giving a map

$$x\mapsto \gamma_{x_0,x,\log(p)}^{-1}\gamma\in G/F^0, \quad \gamma\in F^0P_{x_0,x}$$

which is tautologically given by Vologodsky integrals.

Remember just (φ, N) .

Frobenius is trivialized by the Vologodsky path.

Discrete unipotent Albanese into "Space of monodromy operators on G"

The relation with the derivative of the continuous part:

$$\gamma_{x_0,x,\log(p)} = I_{\mathsf{HK},\log(p)}(\gamma_{x_0,x})$$

 $I_{\mathrm{HK},b} = \exp\left((b-a)N\right)I_{\mathrm{HK},a}$

So deriving in log(p) picks up N.

We expect a similar picture:

Usually (not cycles) $H^{i}_{syn}(X,j) = H^{1}_{st}(K, M(j))$ where $M = H^{i-1}_{\delta t}(\overline{X}, \mathbb{Q}_{p})$

 $H_{\rm st}^1$ is semi-stable cohomology

 $H^1_{\mathrm{st}}(K, M) = \mathrm{Ext}^1$ in the category of filtered (φ, N) -modules between $(\mathsf{D}_{\mathrm{st}}, \mathsf{DR})$ of \mathbb{Q}_p and M.

Discrete part - forget the filtration.

Continuous part computed with Vologodsky integrals.

log(p) derivative gives the discrete part.

Joint work with Wayne Raskind

This is a new type of regulator

It applied to X/K with "totally degenerate" (more or less semi-stable with projective spaces as components) reduction.

Its target is a "*p*-adic torous" CoKer : $T^0 \rightarrow T^{-1} \otimes K^{\times}$, T^* finitely generated \mathbb{Z} -modules.

- Identity map $H^1_{\mathcal{M}}(K,1) = K^{\times} \to K^{\times}$
- For E/K a Tate elliptic curve $\mathbb{G}_m/q^{\mathbb{Z}}$ the identity map

 $H^2_{\mathcal{M}}(E,1)_0\cong E(K) o K^ imes/q^\mathbb{Z}$

- More generally, for a Mumford curve X with Jacobian J, the Abel map X(K) → J(K), J(K) given via its p-adic uniformization.
- The Pal regulator: For X a Mumford curve with dual graph Γ

 $K_2(X) \rightarrow \mathcal{H}(\Gamma, K^{\times}) =$ Harmonic cochains

Construction of the toric regulator

Special fiber Y decomposes as a union $Y = \bigcup_{i=1}^{n} Y_i$. s.t., with

$$Y_I = \bigcap_{i \in I} Y_i, I \subset \{1, \ldots, n\}$$

 $k, r \ge 0$

 $M_\ell = H^k_{\text{\'et}}(X \otimes_K \bar{K}, \mathbb{Z}_\ell)$

Theorem (Raskind and Xarles)

Ignoring finite torsion and cotorsion there are finitely generated \mathbb{Z} -moduels T^i , $i \in \mathbb{Z}$ such that for each ℓ the Galois module $M_{\ell}(r)$ have an increasing filtration U with $\operatorname{gr}_U M_{\ell}(r) = \bigoplus_i T^i \otimes \mathbb{Z}_{\ell}(-i)$.

Proof: Rapoport-Zink weight spectral sequence for $\ell \neq p$

Mokrane + Hyodo + Tsuji when $\ell = p$.

Assume trivial action of $Gal(\overline{K}/K)$ on the T's.

Construction of *T*'s

$$\begin{split} \bar{Y}_{I} &:= Y_{I} \otimes \bar{F} \\ \bar{Y}^{(m)} &= \bigcup_{|I|=m} \bar{Y}_{I} \\ C_{j}^{i,k} &= CH^{i+j-k} (\bar{Y}^{(2k-i+1)}), \ k \geq \max(0,i) \\ C_{j}^{i} &= \bigoplus_{k} C_{j}^{i,k} \\ I_{r} &= I - \{i_{r}\} \end{split}$$

Inclusion $\rho_r: Y_I \to Y_{I_r}$

$$\begin{split} \theta_{i,m} &= \sum_{r=1}^{m+1} (-1)^{r-1} \rho_r^* : CH^i(\bar{Y}^{(m)}) \to CH^i(\bar{Y}^{(m+1)}) ,\\ \delta_{i,m} &= \sum_{r=1}^{m+1} (-1)^r \rho_{r*} : CH^i(\bar{Y}^{(m+1)}) \to CH^{i+1}(\bar{Y}^{(m)}) ,\\ d' &= \bigoplus_{k \ge \max(0,i)} \theta_{i+j-k,2k-i+1} ,\\ d'' &= \bigoplus_{i=1}^{m} \theta_{i+j-k,2k-i} , \end{split}$$

 $k \ge \max(0,i)$

20

$$\begin{split} d_j^i &= d' + d'': C_j^i \to C_j^{i+1} \\ T_j^i &:= H^i(C_j^{\bullet}) \\ \text{Renumbering:} \ T^i &= T_{i+r}^{k-2r-2i} \\ \text{Monodromy map:} \ N: T^i \to T^{i-1} \text{ given by "identity on identical components".} \end{split}$$

$$M'_{\ell} = U^0 M_{\ell}(r) / U^{-2} M_{\ell}(r)$$

$$0
ightarrow T^{-1}\otimes \mathbb{Z}_\ell(1)
ightarrow M'_\ell
ightarrow T^0\otimes \mathbb{Z}_\ell
ightarrow 0$$

Use Bloch-Kato H_g . Boundary map

$$ilde{N}_{\ell}: T^0\otimes \mathbb{Z}_{\ell} o H^1_g(K,T^{-1})\otimes \mathbb{Z}_{\ell}(1))\cong T^{-1}\otimes K^{ imes(\ell)}$$

Lemma

$$T^0\otimes \mathbb{Z}_\ell \xrightarrow{\tilde{N}_\ell} T^{-1}\otimes K^{\times(\ell)} \xrightarrow{\mathsf{val}} T^{-1}\otimes \mathbb{Z}_\ell \text{ is } N\otimes \mathbb{Z}_\ell.$$

Corollary

Exists
$$T^0 \xrightarrow{\tilde{N}} T^{-1} \otimes K^{\times}$$
 s.t. $\tilde{N}_{\ell} = \tilde{N} \otimes \mathbb{Z}_{\ell}$ for each ℓ

We define the toric intermediate Jacobian

$$H^{k+1}_{\mathcal{T}}(X,\mathbb{Z}(r)) := \operatorname{CoKer} \tilde{N}$$

The etale regulator map $\operatorname{reg}_{\ell} : H^{k+1}_{\mathcal{M}}(X, \mathbb{Z}(r))_0 \to H^1_g(K, M_{\ell}(r))$ factors via $H^1_g(K, U^0 M_{\ell}(r))$ because $H^0(K, \mathbb{Q}_{\ell}(j)) = H^1_g(K, \mathbb{Q}_{\ell}(j)) = 0$ for j < 0. Applying $U^0 \to M'_{\ell}$ we get

 $\operatorname{reg}_\ell'': H^{k+1}_{\mathcal{M}}(X, \mathbb{Z}(r))_0 \to H^1_g(K, M'_\ell) \cong \operatorname{CoKer}(T^0 \otimes \mathbb{Z}_\ell \xrightarrow{N_\ell} T^{-1} \otimes K^{\times(\ell)})$

Targets in "Deligne style cohomology". In most cases this is $H^{k+1}_{\mathcal{D}}(X,\mathbb{Q}(r))\cong \mathsf{CoKer}(T^0_{\mathbb{Q}}\to T^{-1}_{\mathbb{Q}})$

Assuming standard conjectures Sreekantan's Deligne cohomology is isomorphic to higher Chow groups of the special fiber

$$H^{k+1}_{\mathcal{D}}(X,\mathbb{Q}(r))\cong CH^{r-1}(Y,2r-k-2)\otimes \mathbb{Q}$$

and the regulator is just a boundary map in K-theory.

Conjecture

For each prime ℓ the valuation of the toric regulator at ℓ is the Sreekantan regulator tensored with \mathbb{Q}_{ℓ} .

Theorem

Assuming Conjecture, Exists $H^{k+1}_{\mathcal{M}}(X,\mathbb{Z}(r)) \xrightarrow{\operatorname{reg}_t} H^{k+1}_{\mathcal{T}}(X,\mathbb{Z}(r))$ giving the toric regulator at ℓ for each ℓ by completion.

Moto: The log-syntomic regulator is the logarithm of the toric regulator. Natural since: "The syntomic Abel-Jacobi map is the log composed with Albanese"

 $\operatorname{reg}_{\operatorname{syn}}: H^{k+1}_{\mathcal{M}}(X, \mathbb{Z}(r))_0 \to H^1_{\operatorname{st}}(K, V), \ V = H^k_{\operatorname{\acute{e}t}}(X \otimes_K \bar{K}, \mathbb{Q}_p(r))$ Commuting diagram

$$\begin{array}{ccc} H^{k+1}_{\mathcal{M}}(X,\mathbb{Z}(r))_{0} \longrightarrow H^{1}_{\mathrm{st}}(K,V) \longrightarrow \mathsf{DR}(V)/(F^{0}+T^{0}\otimes\mathbb{Q}_{p}) \\ & & & \downarrow \\ & & & \downarrow \\ H^{k+1}_{\mathcal{T}}(X,\mathbb{Z}(r)) \xrightarrow{ \log } T^{-1}\otimes K/T^{0}\otimes\mathbb{Q}_{p}. \end{array}$$

Expectation: The derivative with respect to log(p) of the syntomic regulator gives the Sreekantan regulator.

This can be checked for example on K_2 of Mumford curves.

X a Mumford curve with dual graph $\Gamma = (V, E)$

 Y_v - component of reduction

The Sreekantan regulator

$$\mathcal{K}_2(X) o (v \mapsto k(Y_v)^{ imes}) o \mathcal{H}(\Gamma, \mathbb{Z})$$

 $f, g\} \mapsto (v \mapsto h_v = t_{Y_v}(f, g)) \mapsto (e \mapsto \operatorname{ord}_e(h_{e+}) - \operatorname{ord}_e(h_{e-}))$

The syntomic regulator

$$\mathcal{K}_2(X) o \mathcal{H}(\Gamma, \mathcal{K}), \quad \{f, g\} \mapsto \operatorname{res}_e \log(f) d \log(g)$$

Suppose $\operatorname{ord}_{Y_v}(f,g) = (1,0)$. Then $\log(f)d\log(g) = \log(p)d\log(g) + \dots$ so

$$\frac{d}{d\log(p)}\operatorname{res}_e \log(f)d\log(g) = \operatorname{res}_e d\log(g) = \operatorname{ord}_e(g|_{Y_v})$$